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Mutual Impedance Between Probes in a
Circular Waveguide

BAI-SUO WANG

Abstract —’f’be generaf formulas of mutual impedance between two

probes arbitrarily located in a circular waveguide are given by means of a

dyadic Green’s function (DGF) and reaction concept. The waveguide is

semi-infinite. The reflection coefficient at the terminal plane is r. The

lengths, feeding points, and orientations of the two probes in the wave-

guide are all arbitrary. As examples, expressions of mutual impedance for

three specific cases are given and discussed.

I. INTRODUCTION

T HE MUTUAL impedance between two probes verti-

cally located on the broad wall of a rectangular wave-

guide was studied by Ittipiboon and Shafai [1] using the

vector potential A, and that between probes arbitrarily

located in a rectangular waveguide was analyzed recently

by the author [2] using the dyadic Green’s function (DGF)

G. The above investigations are extremely useful in design-

ing microwave circuits, various filters, and antennas with

specific uses.

However, to the author’s knowledge, the mutual

impedance problem for a circular waveguide has not been

considered. In this paper, the probe field distribution and

mutual coupling in circular waveguide are studied in de-

tail. The general formulas of mutual impedance between

probes are given. In the derivation, the DGF and reaction

theorem are used. The waveguide is semi-infinite. The

reflection coefficient at the terminal plane [z = O) is I’. The

lengths, feeding points, and orientations of the two probes

in the waveguide are all arbitrary.

II. THE DYADIC GREEN’S FUNCTION

The problem to be considered is shown in Fig. 1. Two

probe antennas, arbitrarily oriented, are located in a circu-

lar waveguide. Suppose the radius of the waveguide is a

and is filled with air (pO, CO). The DGF G of the first kind

pertaining to the waveguide under study satisfies

v XV xG(r, r’)–k2G(r, r’) =18(r– r’) (1)

where k = ti& is the free-space wavenumber. The ex-
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Fig 1. Two probes in a circular waveguide,

pression for G(r, r’) is given by [3], [4]

G(r, r’)= –&8(r–r’)52

– rNnA(+ k~)m~~(+k~)] ~ z22’ (2)

where kP = (kq – pq)l/z, kx= (k* – A2)1/2, IK = ~a2[l–

(~/q.~)21-Jj(q.,.)t 1A=@2J~+~(p.~),P= q.,,,/a, and ~
= pn~/a. The quantities pnw and q.wl are the m th roots of

the n th-order Bessel function Y. and its derivative, J;,

respectively. The Kronecker delta 80 = 1 for n = O and

80= O for n #O. In summing, n is from O to cc and m

from 1 to co. For simplicity, the parallel subscripts e

(even) and o (odd) on M and N in (2) are omitted, that is,
~;np was simplified to ikl~fi, and so on. M and N are

written as follows:

M~P(+kP) ‘V X[~J.(pp)cos(n@–@P)e*J~~’] (3)

NHx(+kA) =~V XV X[2Jn(Ap)cos (n@–@P)e*J~~’]

(4)
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where the angle % = O for the e component and @P= 7r/2 are rlO( XIO, YIO, ZIO). Assume that the current distribution
for the o component. The general G is a sum of even G. of probe 1 is given by

and odd GO components.

The explicit expression for G(r, r’) is given by Jl({) =f@(t)~(q) (6a)

1

[

sink({–~l)

G(r, r’)= –Pi3(r-r’)i?2+ *H(W
110 [,<(6{2

smk({2 -{1) ‘

nm II=

I

(6b)
sink({~–{)

“( [6;’ n2k1MPMP’(elP + rezP )
I {z~{<{3

1°sink({3– {2) ‘

+ A2k2NPN; (elA + re2A)] where 110 is the value of the current at the feeding point.

The electric field radiated from probe 1 is

+ fi$’[npklMPM((elP + re2P)

J
El= japo G. J1dv’= jtipo

J
13G.11d{ (7)

0’ r,– nAk2NPA$’(elA+ re2A)]

where d{ =Af dx’ + j dy’ + 2 dz’. Assume that the direction
+ &[~k3NPN~(* elA – ‘e2A)] cosines of J are SI = cos al, Sz = cos fll, S3= cos Y1. Hence,

the parametric equations of the { axis are
+ &5’[nKk1A4#’i4~(elP + rez~)

x’= x( = SJ+ Xlo ./= Y( = SJ + yl~

– n~k2~J$’(elA + ‘e2A)]
Z’=z{ = $3( + Zlo. (8)

+ &j’[p2k1MoM:(e1p + re2J Through a tedicms treatment (7), the principal value of the

integral for z > z‘ is found to be

+ n2k#@N~(e~A + rezA)]

[) [

EP ~~~X~K(z)+~#X~A(~)

+ &[rzkJV#j(T 6’IA+ r%)] E+

)

= Z Z(+) ~~w,~y(z)+ Z42~y~A(Z) (ga)

E; ‘1 W 0+ ~#z~A(z)
+. .2jj’[Ak3NzN,(T elk– re2x)]

whereas for z < z‘ the principal value is
+ @[nk3NzNJ(+ elA+ re2A)]

\EP\ f~l~.~w(+ rz)+ B#.&(-E rz) \

~ ;~[k4~z~~(e?1A – rf?2A)] }, z 2 z’ (5)

1:1 ‘m 1 o+w’(-rz I

= xx(+) ~l~,~,(+r’)+~2~,~x(+rz) ~

where

(9b)

M,= ~.l.(pp)sin(n~-op) ~$=~;(pp)cos(n+–$p)
In (9), a correction term E;’ should be added to the term

E; to yield a correct longitudinal component E,; that is,

jy=.J;(~p)COS(~@-@p) ~+=~~n(lp)sk(n+-+p)
E, = E; + E;’. ‘The correction term is

!

13_
2?E=’’(p, @,z) = jcopo ~8(r–r’)22.11dJ

Nz=Jn(Ap)cos(nC# H+p) {,

k2 kA A2
/

l’,

kl=— k2=— k3=; k4=—
= ijupo – ~i3(r-r’)11dz’.

p21PkP A21A IAkA
{,

Based on the distribution theory [5], [6], we have

el, = e tJk, (2–z’)
e2, = e

jk, (z+z’) i=p, A.>

The independent variables of M;, M(, N;, N;, and N;
;8(P-P’)8(’+ -4’) =Z; :Y.(AP)

are p’ and ~’. Note that all the second unit vectors (except
A

2) of the dyadic in (5) are primed (0’, i’). The variable O’ .cos; n&@p)Jn(Ap’) cos(n@’- @p).

should be used in coordinate transformation. Hence the correction term is given by

HI. FIELD El RADIATED BY PROBE 1

The coordinate system of probe 1 is Ol(& q, {), as

E;’(p, @,z)=– ~xx~;Mw(xP,)

shown in Fig. 1. tl and {3 are the endpoints and {2 is the
nm

feeding point. In the O system, the coordinates of point 01 .Jn(Ap)cos n(+–+{)lf= (z-zlo)/s3 (9C)
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where p{ = (x: + y~)l’2 and tan+{ = yrlx(. In (9),

MX = nMpcos$ – pA4+sin@ MY= nMPsin@ +pM~cos@

NX = ANPCOS$ + nN@sin@ N,= ANPsin@ – nN~cos~

FL( f rz) = e-Jk’= * reJk” ~(z) = eJkfz, i=p, A.

The elements of matrix ($) are

+11= 422= Cos+ +12 = – q521 = sin+

q533 = 1 other @,J = O.

Other parameters of (9) are as follows:

[

~ = _ no(z–~o)
I Am (S,k,pmfx + wWw,)

~ = _ ~o(z–~o)
2 ~v (s,k2pNx + s,LpN, + s,hpm)

~ = _ no(z–~o)
3 ~n ( - ‘lk3pN.x - ‘2k3pNy + ‘3k4pNz)

(lOa)

where q. = p. i~o is the intrinsic impedance of free space,

and

1 (3
PM, = ~~, Q’nz({)f,(+ r{) d{, i=x, y (ha)

where

?nX(f) =

?nY(.()=

n.({) =

ny({) =

n=(() =

(12a)

(12b)

(12C)

(12d)

(12e)

(13a)

IV. MUTUAL IMPEDANCE

In order to calculate mutual impedance, we must deter-

mine the tangent component of El along probe 2. With

reference to Fig. 1, the coordinate system of probe 2 is

02(U, u, w); WI and W3 are endpoints, and Wz is the

feeding point. The coordinates of point Oz in the O system

are (X20, Yzo, Zzo ). The current distribution of probe 2 is

similar to that of probe 1 (eq. (6)), that is,

~(w) =til,d(u)c$(u) (14a)

( sink(w-w, )

I
I

-,
wl<w<w~

‘“sin k(wz–wl) ‘
12= (14b)

sink(w3–w)
120 . W2<W<W3.

smk(w3-wz) ‘

Assume that the direction cosines of t are t, = cos a,,

t2 = cos ~2, t3 = cos y2. The parametric

axis are given by

Xw = tlw + X20 y. = tzw + y~o

equations of the ~

= t3w + Z*O.‘w

(15)
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Fig. 2. Two probes meet at 45°.

The tangential component of El along probe 2 is given by

EIW=E1. ti=(tlcos@ +t2sin@)EP

+(–tlsin@ +tzcos@)E@+13E,. (16)

Substituting for El from (9), we get, for z > z’,

+t2[A,(w)’my(w) f&(w) +’42ny(w)j-A(w)]

+t, [’i,n,(w)j,(w) +q’’(pw,+w,zw)]} (17a)

whereas for z < z‘,

E1w=~~{t, [B1nzx(w)fp(+ rw)+B2nx(w)fx(+ rw)]
nm

+f2[~1~y(w)fp(+rw)+B2ny(w)fA(+rw)]

+t3[~3~,(w)fA(–rw)+ E:’(Pw,+~,z~)]} (1’7b)

where m,(x) (i = x, y), n,(w) (i =x, Y. Z) and .f, (* rw),

~(w) (i= p, A) are similar to (12) and (13), respectively,
except that { ~ w. In addition, pW= (x: + y; )1’2 and

tan+W = yW/xW. By the reaction concept, the mutual

impedance between two probes is given by

1
M=–—

/
‘3E1W12dw

Z10120 ~,
(18)

where EIW is given by (17), and 12 is given by (14). The

time factor used is e-JWt. If we desire to adopt eJat, we

need only replace j by – j in all formulas.

V. SPECIFIC CASES

As examples, we discuss some useful cases. In the dis-

cussion below, suppose that the feeding points of two

probes are coincident with 01 and Oz, respectively. The

heights are hl = J3 – {z (Jl = {z = O) and AZ= W3 – W2 (WI

= Wz= O), respectively. What is more, assume that the

probes in all the examples (except probes vertical to termi-

nal plane) are parallel to the xy plane and through the

center of the guide (p= O).

Example 1. Two Probes Meet at 45°

Suppose that the probe 1 is parallel to the x axis and

probe 2 makes an angle of 7r/4 with the x axis, as shown

in Fig. 2. The two are nonplanar skew probes. For probe 1,

the coordinates of the feeding point are ( XIO = – a, Y1O = 0,

Zlo), the orientational parameters are al = 0, I& = YI = fi/27

S, =1, S2 = S3 = O. For probe Z the parameters are (x20 =

1009

Y20 = – a\tij 220); (I2 = p2 = v/4, y! = T/2, tl= t2=

l/fi, tq = O. From (9), the field El radiated from probe 1

for z > Zlo is found to be

[

1.
Ep = ~ ~Co – klnzAH–J. (lup)cosn@eJk*’

?1 m P

– k2A2A~J; (Ap)cosn~eJk”
1

r

1
+k2n AA~–J,, (Ap)sinnq5ejk~z

P 1
E,= ~ ~Cok3AA~J,, ( Ap)cosn@eJk’Z

n ?71

where

(19a)

(19b)

(19C)

Co’= 110qo(2 – 8.)/(477 sin khl)

A~=Fp(+ I’zlo)RP(hl) A~= F~(+ I’zlo)lli(hl)

and

where (l–al O=l– a when n is zero or even and (~– al.

= l{ - al when n is odd. The field distribution for z < .zIo

is

[
EP = ~ ~Co – k1n2B~AJ. (pp)cosn@(e-Jk’:+ reJk”)

n ?)1 P

– k2A2B~J,; (Ap)cosn$(e-lkx’ + reJk”) 1 (21a)

1
+ k,n AB~-–Jn(Ap) sinn@(e-lk\z+ reJkAz)

1
(21b)

!P

E.= z z – ColC3~B~J~(~p)cosn@(e-jkA’ – reJkAz)
nm

(21C)

where B~ = FP(zlo)RY(hl) and BE = ~X(ZIO)~X(~l). In

(19) and (21), the terms of AH and BH are ~ mode, and

the terms of A~ and BE are E mode. If probe 1 makes an

angle of m/4 with the x axis, like probe 2 in Fig. 2, the

electric fields are similar to (19) and (21), except that

cosn@-+ cosn(fp– 7r\4) and sinn@ -+ sinn(~ – 7r/4).
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Fig. 3. One probe on the terminal wall and one probe on the cylindnca]
face.

The mutual impedance between probes in Fig. 2 is

. [eJkpl:20--%ol + ~e,~,(zm+-%)]

+ k2A2~A(~1)~A(~2)[eJkAl=20–’101+ re~~a(zm+zlo)1}
(22)

where DO = kqO(2– 80)/(47r sin klq sin kh2), and RP(h2)

and R A(h z) are similar to (20), except that Ale h z. The

front terms (with subscript p) and the back terms (with

subscript A) in (22) represent the contributions to the

mutual impedance M from the H mode and the E mode,

respectively. Setting n = m = 1 in (22), we get the contribu-

tions to M from the Hll and En. When two probes meet

at an angle +., the mutual impedance between them is

M=~~DOcosn~O- (23)
n l?l

where the - represents all terms in the braces in (22).

Example 2. Two Probes Vertical and Parallel to the

Terminal Wall, Respectively

Assume that the coordinates of the feeding point for
probe 1 are (xlo, .VIO. O). The orientational parameters are
al = ~1 = 7/2, yl = O; S1= Sz= O, S3=1. The parameters

for probe 2 are (.x20= – a, yzo = O, Zlo); a2 = O, 82 = Yz =

T/2, tl=1, t2 = t3 = O, as shown in Fig. 3. The field

radiated from probe 1, for z > hl is

E,= ~ ~ – Cok3AC~J; (Ap)cosrz($– $lo)e~k” (24a)
nm

where C~ = ~n(Aplo)T’A(hl), PIO = (x~o + yfo)l/2, tan~lo =

YIO/XIOt and

In region O < z < hl, the field in (x, y, z) is due to

currents of sections Oz (z > z’) and zhl (z < z’); then (9a),

(9b), and (9c) must be used simultaneously. The integral ~ K

.cosiz(~- +lo)sink(hl -z) (26d)

where

C~(z)=J.(AplO) ~~’(e-Jk’r –reJk’~) sink(hl–od~

(27)

DE(z) = ~~(~plo) ~~~’e~k~rsin k(}zl –{) d{. (28)
~

Because probe 1 is vertical in relation to the terminal wall,

the HZ component is not excited. Therefore there is only E

mode in (24) and (26).

The mutual impedance between the probes in Fig. 3 is

M= ~ ~Dok~AT~(hl)RL( h2)J. (AplO)cos n$10e~kAz20,
?1 ml

zto>hl. (29)

When the feed point of probe 1 is situated at the center

of the terminal plane (origin), plo = O. The Bessel function

4,(O) = O for n + O and YO(0) =1. In this case, only the

modes in which n = O are excited; that is, the fields of the

modes are independent of the azimuthal angle +. Thus (24)

reduces to

EP = ~Cok3AC~J1(Ap)ejki’ (30a)
m

E= = ~ – Cok4C’EJo(Ap)eJk’Z (30b)
m

whereas (26) reduces to

EP=~Co[k3AC~(z) J1(Ap)e~~’=

~k,AD~(z)J1(Ap) (e-’~’z+re’k’Z)] (31a)

Ez’=~Co[ –k4C~(z)Jo(Ap)e~~”
??1

– k4D~(z)Jo( Ap)(e-~k”- reJk” )1 (31b)

~j’=~-~Cok,Jo(Ap) sink(hl -z). (31C)
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Fig. 4. Two probes on the terminal wall.

Hence (29) can be simplified as follows:

M = ~Dok3ATk(h1)RA(h2)ejkAz20. (32)
m

In Co, C~, C~(z), DE(z), and DO in (30)-(32), 2 – 80 = 1

and Jn(AplO) =1. T’~(&) is again given by (25) and R~(lzz)

reduces to

(33)

where ~~(~lw – al) = – J1(AIw – al) is used.

Example 3. Two Probes Perpendicular 10 Terminal Wall

Assume that the coordinates of feeding points for the

two probes are (XIO, ylO, O) and (X20, y20, O), respectively,

as shown in Fig. 4. The orientational parameters of the two

probes are al= a2 = & = fi2 = Ir/2, yl = 72= O, sl = tl= S2

= t2 = O, S3 = t3 =1. When hl = h2 = h, the mutual

impedance is

[( 11M=z~~DO k~ h–&sin2kh +k,H(h)
nrn

“Jn(~p10)Jn(~p20)cosn(@20–%0) (34)
where

.sink(h –J)sink(h–w)didw. (35)

The integrating procedures for H(h) are. as follows:

where the - represents the integrand in

terms involving k~ come from E,”.

VI. CONCLUSIONS

H(h). In (34), the

The mutual impedance between two probes in a semi-

infinite circular waveguide is analyzed. It can be seen that

the mutual impedance is dependent not only on the probe

1o11

lengths, orientations, and separation distance, but also on

the guide size, the dielectric material, and the terminal

reflection coefficient.

The constants kP and kA are real for traveling modes

and imaginary for evanescent modes. Hence, it can be seen

from (18) that when the reflection coefficient r is real, the

contribution to the mutual resistance comes from traveling

modes, while the contribution to the reactance is from the

traveling and evanescent modes. When r is complex, the

mutual resistance and reactance will be dependent on all

modes.

The lowest mc~de in circular waveguide is H1l. Suppose

that the Hll is the only traveling mode and that the higher

order modes are evanescent modes that decay exponen-

tially with the distance. Consider 17= – 1. Equations (22)

and (23) include the resistance and reactance because the

contribution frolm the Hll mode exists. Equations (29),

(32), and (34) include only the reactance because there is

no contribution from the H1l. In overmoded guide, the

mutual impedanee from the higher order modes will be of

interest.
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