

Mutual Impedance Between Probes in a Circular Waveguide

BAI-SUO WANG

Abstract—The general formulas of mutual impedance between two probes arbitrarily located in a circular waveguide are given by means of a dyadic Green's function (DGF) and reaction concept. The waveguide is semi-infinite. The reflection coefficient at the terminal plane is Γ . The lengths, feeding points, and orientations of the two probes in the waveguide are all arbitrary. As examples, expressions of mutual impedance for three specific cases are given and discussed.

I. INTRODUCTION

THE MUTUAL impedance between two probes vertically located on the broad wall of a rectangular waveguide was studied by Ittipiboon and Shafai [1] using the vector potential \mathbf{A} , and that between probes arbitrarily located in a rectangular waveguide was analyzed recently by the author [2] using the dyadic Green's function (DGF) \mathbf{G} . The above investigations are extremely useful in designing microwave circuits, various filters, and antennas with specific uses.

However, to the author's knowledge, the mutual impedance problem for a circular waveguide has not been considered. In this paper, the probe field distribution and mutual coupling in circular waveguide are studied in detail. The general formulas of mutual impedance between probes are given. In the derivation, the DGF and reaction theorem are used. The waveguide is semi-infinite. The reflection coefficient at the terminal plane ($z = 0$) is Γ . The lengths, feeding points, and orientations of the two probes in the waveguide are all arbitrary.

II. THE DYADIC GREEN'S FUNCTION

The problem to be considered is shown in Fig. 1. Two probe antennas, arbitrarily oriented, are located in a circular waveguide. Suppose the radius of the waveguide is a and is filled with air (μ_0, ϵ_0). The DGF \mathbf{G} of the first kind pertaining to the waveguide under study satisfies

$$\nabla \times \nabla \times \mathbf{G}(\mathbf{r}, \mathbf{r}') - k^2 \mathbf{G}(\mathbf{r}, \mathbf{r}') = \mathbf{I}\delta(\mathbf{r} - \mathbf{r}') \quad (1)$$

where $k = \omega/\sqrt{\mu_0\epsilon_0}$ is the free-space wavenumber. The ex-

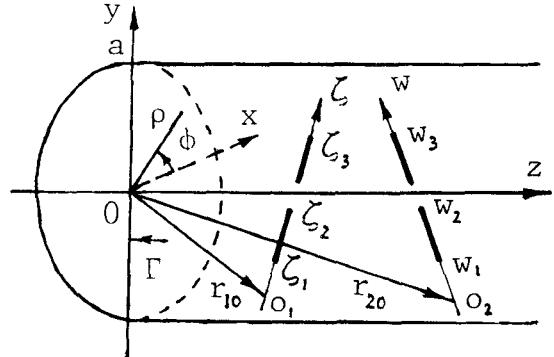


Fig. 1. Two probes in a circular waveguide.

pression for $\mathbf{G}(\mathbf{r}, \mathbf{r}')$ is given by [3], [4]

$$\begin{aligned} \mathbf{G}(\mathbf{r}, \mathbf{r}') = & -\frac{1}{k^2} \delta(\mathbf{r} - \mathbf{r}') \hat{z} \hat{z} \\ & + \frac{j}{4\pi} \sum_n \sum_m \frac{2 - \delta_0}{\mu^2 k_\mu I_\mu} [\mathbf{M}_{n\mu}(\pm k_\mu) \mathbf{M}'_{n\mu}(\mp k_\mu) \\ & + \Gamma \mathbf{M}_{n\mu}(+ k_\mu) \mathbf{M}'_{n\mu}(+ k_\mu)] \\ & + \frac{j}{4\pi} \sum_n \sum_m \frac{2 - \delta_0}{\lambda^2 k_\lambda I_\lambda} [N_{n\lambda}(\pm k_\lambda) N'_{n\lambda}(\mp k_\lambda) \\ & - \Gamma N_{n\lambda}(+ k_\lambda) N'_{n\lambda}(+ k_\lambda)], \quad z \geq z' \quad (2) \end{aligned}$$

where $k_\mu = (k^2 - \mu^2)^{1/2}$, $k_\lambda = (k^2 - \lambda^2)^{1/2}$, $I_\mu = \frac{1}{2}a^2[1 - (n/q_{nm})^2]J_n^2(q_{nm})$, $I_\lambda = \frac{1}{2}a^2J_{n+1}^2(p_{nm})$, $\mu = q_{nm}/a$, and $\lambda = p_{nm}/a$. The quantities p_{nm} and q_{nm} are the m th roots of the n th-order Bessel function J_n and its derivative, J'_n , respectively. The Kronecker delta $\delta_0 = 1$ for $n = 0$ and $\delta_0 = 0$ for $n \neq 0$. In summing, n is from 0 to ∞ and m from 1 to ∞ . For simplicity, the parallel subscripts e (even) and o (odd) on \mathbf{M} and N in (2) are omitted, that is, $\mathbf{M}_{e\mu}$ was simplified to $\mathbf{M}_{n\mu}$, and so on. \mathbf{M} and N are written as follows:

$$\mathbf{M}_{n\mu}(\pm k_\mu) = \nabla \times [\hat{z} J_n(\mu \rho) \cos(n\phi - \phi_p) e^{\pm jk_\mu z}] \quad (3)$$

$$N_{n\lambda}(\pm k_\lambda) = \frac{1}{k} \nabla \times \nabla \times [\hat{z} J_n(\lambda \rho) \cos(n\phi - \phi_p) e^{\pm jk_\lambda z}] \quad (4)$$

Manuscript received June 17, 1988; revised December 29, 1988.
The author is with the Department of Electronic Engineering, Dalian Marine College, Liaoning, People's Republic of China.

IEEE Log Number 8927154.

where the angle $\phi_p = 0$ for the e component and $\phi_p = \pi/2$ for the o component. The general \mathbf{G} is a sum of even \mathbf{G}_e and odd \mathbf{G}_o components.

The explicit expression for $\mathbf{G}(\mathbf{r}, \mathbf{r}')$ is given by

$$\begin{aligned} \mathbf{G}(\mathbf{r}, \mathbf{r}') = & -\frac{1}{k^2} \delta(\mathbf{r} - \mathbf{r}') \hat{z}\hat{z} + \frac{j}{4\pi k^2} \sum_n \sum_m (2 - \delta_0) \\ & \cdot \left\{ \hat{\rho} \hat{\rho}' \left[n^2 k_1 M_\rho M_\rho' (e_{1\mu} + \Gamma e_{2\mu}) \right. \right. \\ & \left. \left. + \lambda^2 k_2 N_\rho N_\rho' (e_{1\lambda} + \Gamma e_{2\lambda}) \right] \right. \\ & + \hat{\rho} \hat{\phi}' \left[n \mu k_1 M_\phi M_\phi' (e_{1\mu} + \Gamma e_{2\mu}) \right. \\ & \left. - n \lambda k_2 N_\phi N_\phi' (e_{1\lambda} + \Gamma e_{2\lambda}) \right] \\ & + \hat{\rho} \hat{z} \left[\lambda k_3 N_\rho N_z' (\pm e_{1\lambda} - \Gamma e_{2\lambda}) \right] \\ & + \hat{\phi} \hat{\rho}' \left[n \mu k_1 M_\phi M_\rho' (e_{1\mu} + \Gamma e_{2\mu}) \right. \\ & \left. - n \lambda k_2 N_\phi N_\rho' (e_{1\lambda} + \Gamma e_{2\lambda}) \right] \\ & + \hat{\phi} \hat{\phi}' \left[\mu^2 k_1 M_\phi M_\phi' (e_{1\mu} + \Gamma e_{2\mu}) \right. \\ & \left. + n^2 k_2 N_\phi N_\phi' (e_{1\lambda} + \Gamma e_{2\lambda}) \right] \\ & + \hat{\phi} \hat{z} \left[n k_3 N_\phi N_z' (\mp e_{1\lambda} + \Gamma e_{2\lambda}) \right] \\ & + \hat{z} \hat{\rho}' \left[\lambda k_3 N_z N_\rho' (\mp e_{1\lambda} - \Gamma e_{2\lambda}) \right] \\ & + \hat{z} \hat{\phi}' \left[n k_3 N_z N_\phi' (\pm e_{1\lambda} + \Gamma e_{2\lambda}) \right] \\ & \left. + \hat{z} \hat{z} \left[k_4 N_z N_z' (e_{1\lambda} - \Gamma e_{2\lambda}) \right] \right\}, \quad z \geq z' \quad (5) \end{aligned}$$

where

$$M_\rho = \frac{1}{\rho} J_n(\mu\rho) \sin(n\phi - \phi_p) \quad M_\phi = J_n'(\mu\rho) \cos(n\phi - \phi_p)$$

$$N_\rho = J_n'(\lambda\rho) \cos(n\phi - \phi_p) \quad N_\phi = \frac{1}{\rho} J_n(\lambda\rho) \sin(n\phi - \phi_p)$$

$$N_z = J_n(\lambda\rho) \cos(n\phi - \phi_p)$$

$$k_1 = \frac{k^2}{\mu^2 I_\mu k_\mu} \quad k_2 = \frac{k_\lambda}{\lambda^2 I_\lambda} \quad k_3 = \frac{j}{I_\lambda} \quad k_4 = \frac{\lambda^2}{I_\lambda k_\lambda}$$

$$e_{1i} = e^{\pm jk_i(z-z')} \quad e_{2i} = e^{jk_i(z+z')}, \quad i = \mu, \lambda.$$

The independent variables of M'_ρ , M'_ϕ , N'_ρ , N'_ϕ , and N'_z are ρ' and ϕ' . Note that all the second unit vectors (except \hat{z}) of the dyadic in (5) are primed ($\hat{\rho}'$, $\hat{\phi}'$). The variable ϕ' should be used in coordinate transformation.

III. FIELD \mathbf{E}_1 RADIATED BY PROBE 1

The coordinate system of probe 1 is $O_1(\xi, \eta, \zeta)$, as shown in Fig. 1. ξ_1 and ξ_3 are the endpoints and ξ_2 is the feeding point. In the O system, the coordinates of point O_1

are $r_{10}(x_{10}, y_{10}, z_{10})$. Assume that the current distribution of probe 1 is given by

$$J_1(\zeta) = \hat{\xi} I_1 \delta(\xi) \delta(\eta) \quad (6a)$$

$$I_1 = \begin{cases} I_{10} \frac{\sin k(\zeta - \xi_1)}{\sin k(\xi_2 - \xi_1)}, & \xi_1 \leq \zeta \leq \xi_2 \\ I_{10} \frac{\sin k(\xi_3 - \zeta)}{\sin k(\xi_3 - \xi_2)}, & \xi_2 \leq \zeta \leq \xi_3 \end{cases} \quad (6b)$$

where I_{10} is the value of the current at the feeding point. The electric field radiated from probe 1 is

$$\mathbf{E}_1 = j\omega\mu_0 \int_{v'} \mathbf{G} \cdot \mathbf{J}_1 dv' = j\omega\mu_0 \int_{\xi_1}^{\xi_3} \mathbf{G} \cdot \mathbf{J}_1 d\xi \quad (7)$$

where $d\xi = \hat{x} dx' + \hat{y} dy' + \hat{z} dz'$. Assume that the direction cosines of $\hat{\zeta}$ are $s_1 = \cos \alpha_1$, $s_2 = \cos \beta_1$, $s_3 = \cos \gamma_1$. Hence, the parametric equations of the ζ axis are

$$\begin{aligned} x' &= x_\xi = s_1 \zeta + x_{10} & y' &= y_\xi = s_2 \zeta + y_{10} \\ z' &= z_\xi = s_3 \zeta + z_{10}. \end{aligned} \quad (8)$$

Through a tedious treatment (7), the principal value of the integral for $z > z'$ is found to be

$$\begin{pmatrix} E_\rho \\ E_\phi \\ E_z' \end{pmatrix} = \sum_n \sum_m (\phi) \begin{pmatrix} A_1 M_x F_\mu(z) + A_2 N_x F_\lambda(z) \\ A_1 M_y F_\mu(z) + A_2 N_y F_\lambda(z) \\ 0 + A_3 N_z F_\lambda(z) \end{pmatrix} \quad (9a)$$

whereas for $z < z'$ the principal value is

$$\begin{pmatrix} E_\rho \\ E_\phi \\ E_z' \end{pmatrix} = \sum_n \sum_m (\phi) \begin{pmatrix} B_1 M_x F_\mu(+\Gamma z) + B_2 N_x F_\lambda(+\Gamma z) \\ B_1 M_y F_\mu(+\Gamma z) + B_2 N_y F_\lambda(+\Gamma z) \\ 0 + B_3 N_z F_\lambda(-\Gamma z) \end{pmatrix}. \quad (9b)$$

In (9), a correction term E_z'' should be added to the term E_z' to yield a correct longitudinal component E_z ; that is, $E_z = E_z' + E_z''$. The correction term is

$$\begin{aligned} \hat{z} E_z''(\rho, \phi, z) &= j\omega\mu_0 \int_{\xi_1}^{\xi_3} -\frac{1}{k^2} \delta(\mathbf{r} - \mathbf{r}') \hat{z}\hat{z} \cdot \mathbf{J}_1 d\xi \\ &= \hat{z} j\omega\mu_0 \int_{\xi_1}^{\xi_3} -\frac{1}{k^2} \delta(\mathbf{r} - \mathbf{r}') I_1 dz'. \end{aligned}$$

Based on the distribution theory [5], [6], we have

$$\begin{aligned} \frac{1}{\rho'} \delta(\rho - \rho') \delta(\phi - \phi') &= \sum_n \sum_m \frac{2 - \delta_0}{2\pi I_\lambda} J_n(\lambda\rho) \\ &\cdot \cos(n\phi - \phi_p) J_n(\lambda\rho') \cos(n\phi' - \phi_p). \end{aligned}$$

Hence the correction term is given by

$$\begin{aligned} E_z''(\rho, \phi, z) &= -\frac{j\eta_0}{2k\pi} \sum_n \sum_m \frac{2 - \delta_0}{I_\lambda} \frac{s_3}{|s_3|} I_1(\zeta) J_n(\lambda\rho_\zeta) \\ &\cdot J_n(\lambda\rho) \cos n(\phi - \phi_\zeta) \Big|_{\zeta = (z - z_{10})/s_3} \quad (9c) \end{aligned}$$

where $\rho_\xi = (x_\xi^2 + y_\xi^2)^{1/2}$ and $\tan \phi_\xi = y_\xi/x_\xi$. In (9),

$$\begin{aligned} M_x &= nM_\rho \cos \phi - \mu M_\phi \sin \phi & M_y &= nM_\rho \sin \phi + \mu M_\phi \cos \phi \\ N_x &= \lambda N_\rho \cos \phi + nN_\phi \sin \phi & N_y &= \lambda N_\rho \sin \phi - nN_\phi \cos \phi \\ F_i(\pm \Gamma z) &= e^{-jk_i z} \pm \Gamma e^{jk_i z} & F_i(z) &= e^{jk_i z}, \quad i = \mu, \lambda. \end{aligned}$$

The elements of matrix (ϕ) are

$$\begin{aligned} \phi_{11} &= \phi_{22} = \cos \phi & \phi_{12} &= -\phi_{21} = \sin \phi \\ \phi_{33} &= 1 & \text{other } \phi_{ij} &= 0. \end{aligned}$$

Other parameters of (9) are as follows:

$$\begin{cases} A_1 = -\frac{\eta_0(2-\delta_0)}{4\pi}(s_1 k_1 P_{Mx} + s_2 k_1 P_{My}) \\ A_2 = -\frac{\eta_0(2-\delta_0)}{4\pi}(s_1 k_2 P_{Nx} + s_2 k_2 P_{Ny} + s_3 k_3 P_{Nz}) \\ A_3 = -\frac{\eta_0(2-\delta_0)}{4\pi}(-s_1 k_3 P_{Nx} - s_2 k_3 P_{Ny} + s_3 k_4 P_{Nz}) \end{cases} \quad (10a)$$

$$\begin{cases} B_1 = -\frac{\eta_0(2-\delta_0)}{4\pi}(s_1 k_1 Q_{Mx} + s_2 k_1 Q_{My}) \\ B_2 = -\frac{\eta_0(2-\delta_0)}{4\pi}(s_1 k_2 Q_{Nx} + s_2 k_2 Q_{Ny} - s_3 k_3 Q_{Nz}) \\ B_3 = -\frac{\eta_0(2-\delta_0)}{4\pi}(s_1 k_3 Q_{Nx} + s_2 k_3 Q_{Ny} + s_3 k_4 Q_{Nz}) \end{cases} \quad (10b)$$

where $\eta_0 = \sqrt{\mu_0/\epsilon_0}$ is the intrinsic impedance of free space, and

$$P_{Mi} = \frac{1}{k} \int_{\xi_1}^{\xi_3} I_1 m_i(\xi) f_\mu(+\Gamma \xi) d\xi, \quad i = x, y \quad (11a)$$

$$Q_{Mi} = \frac{1}{k} \int_{\xi_1}^{\xi_3} I_1 m_i(\xi) f_\mu(\xi) d\xi, \quad i = x, y \quad (11b)$$

$$P_{Ni} = \frac{1}{k} \int_{\xi_1}^{\xi_3} I_1 n_i(\xi) f_\lambda(+\Gamma \xi) d\xi, \quad i = x, y \quad (11c)$$

$$P_{Nz} = \frac{1}{k} \int_{\xi_1}^{\xi_3} I_1 n_z(\xi) f_\lambda(-\Gamma \xi) d\xi \quad (11d)$$

$$Q_{Ni} = \frac{1}{k} \int_{\xi_1}^{\xi_3} I_1 n_i(\xi) f_\lambda(\xi) d\xi, \quad i = x, y, z \quad (11e)$$

where

$$\begin{aligned} m_x(\xi) &= \frac{nx_\xi}{\rho_\xi^2} J_n(\mu \rho_\xi) \sin(n\phi_\xi - \phi_p) \\ &\quad - \frac{\mu y_\xi}{\rho_\xi} J'_n(\mu \rho_\xi) \cos(n\phi_\xi - \phi_p) \end{aligned} \quad (12a)$$

$$\begin{aligned} m_y(\xi) &= \frac{ny_\xi}{\rho_\xi^2} J_n(\mu \rho_\xi) \sin(n\phi_\xi - \phi_p) \\ &\quad + \frac{\mu x_\xi}{\rho_\xi} J'_n(\mu \rho_\xi) \cos(n\phi_\xi - \phi_p) \end{aligned} \quad (12b)$$

$$\begin{aligned} n_x(\xi) &= \frac{\lambda x_\xi}{\rho_\xi} J'_n(\lambda \rho_\xi) \cos(n\phi_\xi - \phi_p) \\ &\quad + \frac{ny_\xi}{\rho_\xi^2} J_n(\lambda \rho_\xi) \sin(n\phi_\xi - \phi_p) \end{aligned} \quad (12c)$$

$$\begin{aligned} n_y(\xi) &= \frac{\lambda y_\xi}{\rho_\xi} J'_n(\lambda \rho_\xi) \cos(n\phi_\xi - \phi_p) \\ &\quad - \frac{nx_\xi}{\rho_\xi^2} J_n(\lambda \rho_\xi) \sin(n\phi_\xi - \phi_p) \end{aligned} \quad (12d)$$

$$n_z(\xi) = J_n(\lambda \rho_\xi) \cos(n\phi_\xi - \phi_p) \quad (12e)$$

$$f_i(\pm \Gamma \xi) = e^{-jk_i z_\xi} \pm \Gamma e^{jk_i z_\xi}, \quad i = \mu, \lambda \quad (13a)$$

$$f_i(\xi) = e^{jk_i z_\xi}, \quad i = \mu, \lambda. \quad (13b)$$

IV. MUTUAL IMPEDANCE

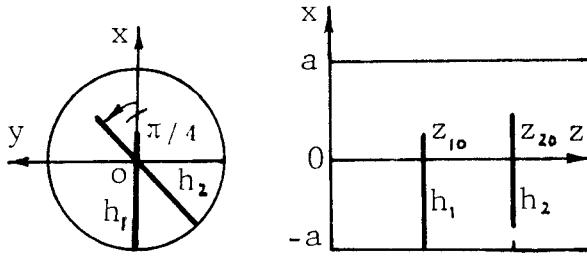
In order to calculate mutual impedance, we must determine the tangent component of E_1 along probe 2. With reference to Fig. 1, the coordinate system of probe 2 is $O_2(u, v, w)$; w_1 and w_3 are endpoints, and w_2 is the feeding point. The coordinates of point O_2 in the O system are (x_{20}, y_{20}, z_{20}) . The current distribution of probe 2 is similar to that of probe 1 (eq. (6)), that is,

$$J_2(w) = \hat{w} I_2 \delta(u) \delta(v) \quad (14a)$$

$$I_2 = \begin{cases} I_{20} \frac{\sin k(w - w_1)}{\sin k(w_2 - w_1)}, & w_1 \leq w \leq w_2 \\ I_{20} \frac{\sin k(w_3 - w)}{\sin k(w_3 - w_2)}, & w_2 \leq w \leq w_3. \end{cases} \quad (14b)$$

Assume that the direction cosines of \hat{w} are $t_1 = \cos \alpha_2$, $t_2 = \cos \beta_2$, $t_3 = \cos \gamma_2$. The parametric equations of the w axis are given by

$$x_w = t_1 w + x_{20} \quad y_w = t_2 w + y_{20} \quad z_w = t_3 w + z_{20}. \quad (15)$$

Fig. 2. Two probes meet at 45° .

The tangential component of \mathbf{E}_1 along probe 2 is given by

$$\begin{aligned} E_{1w} = \mathbf{E}_1 \cdot \hat{w} &= (t_1 \cos \phi + t_2 \sin \phi) E_\rho \\ &+ (-t_1 \sin \phi + t_2 \cos \phi) E_\phi + t_3 E_z. \quad (16) \end{aligned}$$

Substituting for \mathbf{E}_1 from (9), we get, for $z > z'$,

$$\begin{aligned} E_{1w} = \sum_n \sum_m \{ &t_1 [A_1 m_x(w) f_\mu(w) + A_2 n_x(w) f_\lambda(w)] \\ &+ t_2 [A_1(w) m_y(w) f_\mu(w) + A_2 n_y(w) f_\lambda(w)] \\ &+ t_3 [A_3 n_z(w) f_\lambda(w) + E_z''(\rho_w, \phi_w, z_w)] \} \quad (17a) \end{aligned}$$

whereas for $z < z'$,

$$\begin{aligned} E_{1w} = \sum_n \sum_m \{ &t_1 [B_1 m_x(w) f_\mu(+\Gamma w) + B_2 n_x(w) f_\lambda(+\Gamma w)] \\ &+ t_2 [B_1 m_y(w) f_\mu(+\Gamma w) + B_2 n_y(w) f_\lambda(+\Gamma w)] \\ &+ t_3 [B_3 n_z(w) f_\lambda(-\Gamma w) + E_z''(\rho_w, \phi_w, z_w)] \} \quad (17b) \end{aligned}$$

where $m_i(x)$ ($i = x, y$), $n_i(w)$ ($i = x, y, z$) and $f_i(\pm \Gamma w)$, $f_i(w)$ ($i = \mu, \lambda$) are similar to (12) and (13), respectively, except that $\xi \rightarrow w$. In addition, $\rho_w = (x_w^2 + y_w^2)^{1/2}$ and $\tan \phi_w = y_w/x_w$. By the reaction concept, the mutual impedance between two probes is given by

$$M = -\frac{1}{I_{10} I_{20}} \int_{w_1}^{w_2} E_{1w} I_2 dw \quad (18)$$

where E_{1w} is given by (17), and I_2 is given by (14). The time factor used is $e^{-j\omega t}$. If we desire to adopt $e^{j\omega t}$, we need only replace j by $-j$ in all formulas.

V. SPECIFIC CASES

As examples, we discuss some useful cases. In the discussion below, suppose that the feeding points of two probes are coincident with O_1 and O_2 , respectively. The heights are $h_1 = \xi_3 - \xi_2$ ($\xi_1 = \xi_2 = 0$) and $h_2 = w_3 - w_2$ ($w_1 = w_2 = 0$), respectively. What is more, assume that the probes in all the examples (except probes vertical to terminal plane) are parallel to the xy plane and through the center of the guide ($\rho = 0$).

Example 1. Two Probes Meet at 45°

Suppose that the probe 1 is parallel to the x axis and probe 2 makes an angle of $\pi/4$ with the x axis, as shown in Fig. 2. The two are nonplanar skew probes. For probe 1, the coordinates of the feeding point are ($x_{10} = -a$, $y_{10} = 0$, z_{10}), the orientational parameters are $\alpha_1 = 0$, $\beta_1 = \gamma_1 = \pi/2$, $s_1 = 1$, $s_2 = s_3 = 0$. For probe 2, the parameters are ($x_{20} =$

$y_{20} = -a/\sqrt{2}$, z_{20}); $\alpha_2 = \beta_2 = \pi/4$, $\gamma_2 = \pi/2$, $t_1 = t_2 = 1/\sqrt{2}$, $t_3 = 0$. From (9), the field \mathbf{E}_1 radiated from probe 1 for $z > z_{10}$ is found to be

$$\begin{aligned} E_\rho = \sum_n \sum_m C_0 \left[&-k_1 n^2 A_H \frac{1}{\rho} J_n(\mu \rho) \cos n\phi e^{jk_\mu z} \right. \\ \left. - k_2 \lambda^2 A_E J_n'(\lambda \rho) \cos n\phi e^{jk_\lambda z} \right] \quad (19a) \end{aligned}$$

$$\begin{aligned} E_\phi = \sum_n \sum_m C_0 \left[&k_1 n \mu A_H J_n'(\mu \rho) \sin n\phi e^{jk_\mu z} \right. \\ \left. + k_2 n \lambda A_E \frac{1}{\rho} J_n'(\lambda \rho) \sin n\phi e^{jk_\lambda z} \right] \quad (19b) \end{aligned}$$

$$E_z = \sum_n \sum_m C_0 k_3 \lambda A_E J_n(\lambda \rho) \cos n\phi e^{jk_\lambda z} \quad (19c)$$

where

$$C_0 = I_{10} \eta_0 (2 - \delta_0) / (4\pi \sin kh_1)$$

$$A_H = F_\mu (+\Gamma z_{10}) R_\mu(h_1) \quad A_E = F_\lambda (+\Gamma z_{10}) R_\lambda(h_1)$$

and

$$R_\mu(h_1) = \frac{1}{k} \int_0^{h_1} \frac{1}{(\xi - a)_o} J_n(\mu|\xi - a|) \sin k(h_1 - \xi) d\xi \quad (20a)$$

$$R_\lambda(h_1) = \frac{1}{k} \int_0^{h_1} \frac{\xi - a}{(\xi - a)_e} J_n'(\lambda|\xi - a|) \sin k(h_1 - \xi) d\xi \quad (20b)$$

where $(\xi - a)_o = \xi - a$ when n is zero or even and $(\xi - a)_o = |\xi - a|$ when n is odd. The field distribution for $z < z_{10}$ is

$$\begin{aligned} E_\rho = \sum_n \sum_m C_0 \left[&-k_1 n^2 B_H \frac{1}{\rho} J_n(\mu \rho) \cos n\phi (e^{-jk_\mu z} + \Gamma e^{jk_\mu z}) \right. \\ \left. - k_2 \lambda^2 B_E J_n'(\lambda \rho) \cos n\phi (e^{-jk_\lambda z} + \Gamma e^{jk_\lambda z}) \right] \quad (21a) \end{aligned}$$

$$\begin{aligned} E_\phi = \sum_n \sum_m C_0 \left[&k_1 n \mu B_H J_n'(\mu \rho) \sin n\phi (e^{-jk_\mu z} + \Gamma e^{jk_\mu z}) \right. \\ \left. + k_2 n \lambda B_E \frac{1}{\rho} J_n'(\lambda \rho) \sin n\phi (e^{-jk_\lambda z} + \Gamma e^{jk_\lambda z}) \right] \quad (21b) \end{aligned}$$

$$E_z = \sum_n \sum_m -C_0 k_3 \lambda B_E J_n(\lambda \rho) \cos n\phi (e^{-jk_\lambda z} - \Gamma e^{jk_\lambda z}) \quad (21c)$$

where $B_H = F_\mu(z_{10}) R_\mu(h_1)$ and $B_E = F_\lambda(z_{10}) R_\lambda(h_1)$. In (19) and (21), the terms of A_H and B_H are H mode, and the terms of A_E and B_E are E mode. If probe 1 makes an angle of $\pi/4$ with the x axis, like probe 2 in Fig. 2, the electric fields are similar to (19) and (21), except that

$$\cos n\phi \rightarrow \cos n(\phi - \pi/4) \quad \text{and} \quad \sin n\phi \rightarrow \sin n(\phi - \pi/4).$$

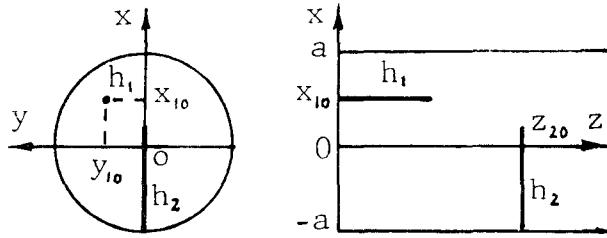


Fig. 3. One probe on the terminal wall and one probe on the cylindrical face.

The mutual impedance between probes in Fig. 2 is

$$M = \sum_n \sum_m D_0 \cos \frac{n\pi}{4} \left\{ k_1 n^2 R_\mu(h_1) R_\mu(h_2) \cdot [e^{jk_\mu |z_{20} - z_{10}|} + \Gamma e^{jk_\mu (z_{20} + z_{10})}] + k_2 \lambda^2 R_\lambda(h_1) R_\lambda(h_2) [e^{jk_\lambda |z_{20} - z_{10}|} + \Gamma e^{jk_\lambda (z_{20} + z_{10})}] \right\} \quad (22)$$

where $D_0 = k \eta_0 (2 - \delta_0) / (4\pi \sin kh_1 \sin kh_2)$, and $R_\mu(h_2)$ and $R_\lambda(h_2)$ are similar to (20), except that $h_1 \rightarrow h_2$. The front terms (with subscript μ) and the back terms (with subscript λ) in (22) represent the contributions to the mutual impedance M from the H mode and the E mode, respectively. Setting $n = m = 1$ in (22), we get the contributions to M from the H_{11} and E_{11} . When two probes meet at an angle ϕ_0 , the mutual impedance between them is

$$M = \sum_n \sum_m D_0 \cos n \phi_0 \sim \quad (23)$$

where the \sim represents all terms in the braces in (22).

Example 2. Two Probes Vertical and Parallel to the Terminal Wall, Respectively

Assume that the coordinates of the feeding point for probe 1 are $(x_{10}, y_{10}, 0)$. The orientational parameters are $\alpha_1 = \beta_1 = \pi/2$, $\gamma_1 = 0$; $s_1 = s_2 = 0$, $s_3 = 1$. The parameters for probe 2 are $(x_{20} = -a, y_{20} = 0, z_{20})$; $\alpha_2 = 0$, $\beta_2 = \gamma_2 = \pi/2$, $t_1 = 1$, $t_2 = t_3 = 0$, as shown in Fig. 3. The field radiated from probe 1, for $z > h_1$ is

$$E_\rho = \sum_n \sum_m -C_0 k_3 \lambda C_E J_n'(\lambda \rho) \cos n(\phi - \phi_{10}) e^{jk_\lambda z} \quad (24a)$$

$$E_\phi = \sum_n \sum_m C_0 k_3 n C_E \frac{1}{\rho} J_n(\lambda \rho) \sin n(\phi - \phi_{10}) e^{jk_\lambda z} \quad (24b)$$

$$E_z = \sum_n \sum_m -C_0 k_4 C_E J_n(\lambda \rho) \cos n(\phi - \phi_{10}) e^{jk_\lambda z} \quad (24c)$$

where $C_E = J_n(\lambda \rho_{10}) T_\lambda(h_1)$, $\rho_{10} = (x_{10}^2 + y_{10}^2)^{1/2}$, $\tan \phi_{10} = y_{10}/x_{10}$, and

$$T_\lambda(h_1) = \frac{1}{k} \int_0^{h_1} (e^{-jk_\lambda \xi} - \Gamma e^{jk_\lambda \xi}) \sin k(h_1 - \xi) d\xi. \quad (25)$$

In region $0 < z < h_1$, the field in (x, y, z) is due to currents of sections $0z$ ($z > z'$) and zh_1 ($z < z'$); then (9a), (9b), and (9c) must be used simultaneously. The integral

intervals are $0 \rightarrow z$ for P_{Nz} and $z \rightarrow h_1$ for Q_{Nz} . Thus

$$E_\rho = \sum_n \sum_m C_0 \left[-k_3 \lambda C_E(z) J_n'(\lambda \rho) \cos n(\phi - \phi_{10}) e^{jk_\lambda z} + k_3 \lambda D_E(z) J_n'(\lambda \rho) \cos n(\phi - \phi_{10}) \cdot (e^{-jk_\lambda z} + \Gamma e^{jk_\lambda z}) \right] \quad (26a)$$

$$E_\phi = \sum_n \sum_m C_0 \left[k_3 n C_E(z) \frac{1}{\rho} J_n(\lambda \rho) \sin n(\phi - \phi_{10}) e^{jk_\lambda z} - k_3 n D_E(z) \frac{1}{\rho} J_n(\lambda \rho) \sin n(\phi - \phi_{10}) \cdot (e^{-jk_\lambda z} + \Gamma e^{jk_\lambda z}) \right] \quad (26b)$$

$$E_z' = \sum_n \sum_m C_0 \left[-k_4 C_E(z) J_n(\lambda \rho) \cos n(\phi - \phi_{10}) e^{jk_\lambda z} - k_4 D_E(z) J_n(\lambda \rho) \cos n(\phi - \phi_{10}) \cdot (e^{-jk_\lambda z} - \Gamma e^{jk_\lambda z}) \right] \quad (26c)$$

$$E_z'' = \sum_n \sum_m -\frac{2}{k} C_0 k_3 J_n(\lambda \rho_{10}) J_n(\lambda \rho) \cdot \cos n(\phi - \phi_{10}) \sin k(h_1 - z) \quad (26d)$$

where

$$C_E(z) = J_n(\lambda \rho_{10}) \frac{1}{k} \int_0^z (e^{-jk_\lambda \xi} - \Gamma e^{jk_\lambda \xi}) \sin k(h_1 - \xi) d\xi \quad (27)$$

$$D_E(z) = J_n(\lambda \rho_{10}) \frac{1}{k} \int_z^{h_1} e^{jk_\lambda \xi} \sin k(h_1 - \xi) d\xi. \quad (28)$$

Because probe 1 is vertical in relation to the terminal wall, the H_z component is not excited. Therefore there is only E mode in (24) and (26).

The mutual impedance between the probes in Fig. 3 is

$$M = \sum_n \sum_m D_0 k_3 \lambda T_\lambda(h_1) R_\lambda(h_2) J_n(\lambda \rho_{10}) \cos n \phi_{10} e^{jk_\lambda z_{20}}, \quad z_{20} > h_1. \quad (29)$$

When the feed point of probe 1 is situated at the center of the terminal plane (origin), $\rho_{10} = 0$. The Bessel function $J_n(0) = 0$ for $n \neq 0$ and $J_0(0) = 1$. In this case, only the modes in which $n = 0$ are excited; that is, the fields of the modes are independent of the azimuthal angle ϕ . Thus (24) reduces to

$$E_\rho = \sum_m C_0 k_3 \lambda C_E J_1(\lambda \rho) e^{jk_\lambda z} \quad (30a)$$

$$E_z = \sum_m -C_0 k_4 C_E J_0(\lambda \rho) e^{jk_\lambda z} \quad (30b)$$

whereas (26) reduces to

$$E_\rho = \sum_m C_0 \left[k_3 \lambda C_E(z) J_1(\lambda \rho) e^{jk_\lambda z} - k_3 \lambda D_E(z) J_1(\lambda \rho) (e^{-jk_\lambda z} + \Gamma e^{jk_\lambda z}) \right] \quad (31a)$$

$$E_z' = \sum_m C_0 \left[-k_4 C_E(z) J_0(\lambda \rho) e^{jk_\lambda z} - k_4 D_E(z) J_0(\lambda \rho) (e^{-jk_\lambda z} - \Gamma e^{jk_\lambda z}) \right] \quad (31b)$$

$$E_z'' = \sum_m -\frac{2}{k} C_0 k_3 J_0(\lambda \rho) \sin k(h_1 - z). \quad (31c)$$

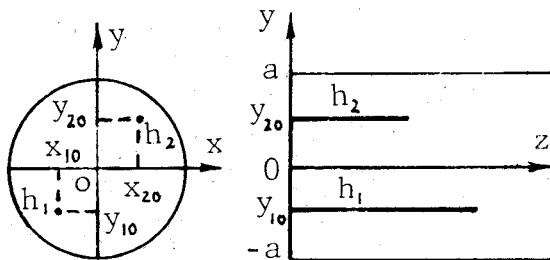


Fig. 4. Two probes on the terminal wall.

Hence (29) can be simplified as follows:

$$M = \sum_m D_0 k_3 \lambda T_\lambda(h_1) R_\lambda(h_2) e^{jk_\lambda z_{20}}. \quad (32)$$

In C_0 , C_E , $C_E(z)$, $D_E(z)$, and D_0 in (30)–(32), $2 - \delta_0 = 1$ and $J_n(\lambda \rho_{10}) = 1$. $T_\lambda(h_1)$ is again given by (25) and $R_\lambda(h_2)$ reduces to

$$R_\lambda(h_2) = -\frac{1}{k} \int_0^{h_2} \frac{w-a}{|w-a|} J_1(\lambda|w-a|) \sin k(h_2-w) dw \quad (33)$$

where $J'_0(\lambda|w-a|) = -J_1(\lambda|w-a|)$ is used.

Example 3. Two Probes Perpendicular to Terminal Wall

Assume that the coordinates of feeding points for the two probes are $(x_{10}, y_{10}, 0)$ and $(x_{20}, y_{20}, 0)$, respectively, as shown in Fig. 4. The orientational parameters of the two probes are $\alpha_1 = \alpha_2 = \beta_1 = \beta_2 = \pi/2$, $\gamma_1 = \gamma_2 = 0$, $s_1 = t_1 = s_2 = t_2 = 0$, $s_3 = t_3 = 1$. When $h_1 = h_2 = h$, the mutual impedance is

$$M = \sum_n \sum_m \frac{1}{k^2} D_0 \left[k_3 \left(h - \frac{1}{2k} \sin 2kh \right) + k_4 H(h) \right] \cdot J_n(\lambda \rho_{10}) J_n(\lambda \rho_{20}) \cos n(\phi_{20} - \phi_{10}) \quad (34)$$

where

$$H(h) = \int_{\xi=0}^h \int_{w=0}^h [e^{jk_\lambda|w-\xi|} - \Gamma e^{jk_\lambda(w+\xi)}] \cdot \sin k(h-\xi) \sin k(h-w) d\xi dw. \quad (35)$$

The integrating procedures for $H(h)$ are as follows:

$$\begin{aligned} \int_{\xi=0}^h \int_{w=0}^h \sim d\xi dw &= \int_{\xi=0}^h \left(\int_{w=0}^{\xi} + \int_{w=\xi}^h \right) \sim d\xi dw \\ &= \int_{w=0}^h \left(\int_{\xi=0}^w + \int_{\xi=w}^h \right) \sim d\xi dw \end{aligned}$$

where the \sim represents the integrand in $H(h)$. In (34), the terms involving k_3 come from E_z'' .

VI. CONCLUSIONS

The mutual impedance between two probes in a semi-infinite circular waveguide is analyzed. It can be seen that the mutual impedance is dependent not only on the probe

lengths, orientations, and separation distance, but also on the guide size, the dielectric material, and the terminal reflection coefficient.

The constants k_μ and k_λ are real for traveling modes and imaginary for evanescent modes. Hence, it can be seen from (18) that when the reflection coefficient Γ is real, the contribution to the mutual resistance comes from traveling modes, while the contribution to the reactance is from the traveling and evanescent modes. When Γ is complex, the mutual resistance and reactance will be dependent on all modes.

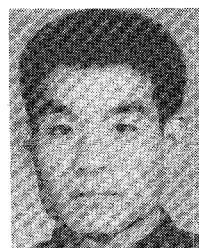
The lowest mode in circular waveguide is H_{11} . Suppose that the H_{11} is the only traveling mode and that the higher order modes are evanescent modes that decay exponentially with the distance. Consider $\Gamma = -1$. Equations (22) and (23) include the resistance and reactance because the contribution from the H_{11} mode exists. Equations (29), (32), and (34) include only the reactance because there is no contribution from the H_{11} . In overmoded guide, the mutual impedance from the higher order modes will be of interest.

ACKNOWLEDGMENT

The author is greatly indebted to an anonymous reviewer for suggestions regarding the use of the direction cosines in [2]. He also wishes to thank Prof. F. C. Chang, F. S. Fan, H. Wang, and Q. M. Zhong for their support.

REFERENCES

- [1] A. Ittipiboon and L. Shafai, "Probe mutual impedance in a rectangular waveguide," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-33, pp. 327–335, Apr. 1985.
- [2] B. S. Wang, "Mutual impedance between probes in a waveguide," *IEEE Trans. Microwave Theory Tech.*, vol. 36, pp. 53–60, Jan. 1988.
- [3] C. T. Tai, *Dyadic Green's Function in Electromagnetic Theory*, Scranton, Pa: International Textbook, 1971, ch. 6.
- [4] C. T. Tai, "On the eigenfunction expansion of dyadic Green's function," *Proc. IEEE*, vol. 61, pp. 480–481, Apr. 1973.
- [5] J. J. H. Wang, "A unified and consistent view on the singularities of the electric dyadic Green's function in the source region," *IEEE Trans. Antennas Propagat.*, vol. AP-30, pp. 463–468, May 1982.
- [6] Pan Shenggen, "The operator method for the determination of dyadic Green's functions," *J. Electron.* (Beijing), vol. 6, no. 3, pp. 181–188, May 1984.



Bai-Suo Wang was born in Shanxi Province, China, on February 10, 1941. He graduated from the Department of Physics, Nankai University, Tienjin, China, in 1964.

He is currently an Associate Professor in the Department of Electronic Engineering, Dalian Marine College, Liaoning, China. His research interests include electromagnetic theory, microwave engineering, antennas, and wave propagation.