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Mutual Impedance Between Probes in a
Circular Waveguide

BAI-SUO WANG

Abstract —The general formulas of mutual impedance between two
probes arbitrarily located in a circular waveguide are given by means of a
dyadic Green’s function (DGF) and reaction concept. The waveguide is
semi-infinite. The reflection coefficient at the terminal plane is I'. The
lengths, feeding points, and orientations of the two probes in the wave-
guide are all arbitrary. As examples, expressions of mutual impedance for
three specific cases are given and discussed.

I. INTRODUCTION

HE MUTUAL impedance between two probes verti-

cally located on the broad wall of a rectangular wave-
guide was studied by Ittipiboon and Shafai [1] using the
vector potential A4, and that between probes arbitrarily
located in a rectangular waveguide was analyzed recently
by the author [2] using the dyadic Green’s function (DGF)
G. The above investigations are extremely useful in design-
' ing microwave circuits, various filters, and antennas with
specific uses.

However, to the author’s knowledge, the mutual
impedance problem for a circular waveguide has not been
considered. In this paper, the probe field distribution and
mutual coupling in circular waveguide are studied in de-
tail. The general formulas of mutual impedance between
probes are given. In the derivation, the DGF and reaction
theorem are used. The waveguide is semi-infinite. The
reflection coefficient at the terminal plane (z = 0) is I'. The
lengths, feeding points, and orientations of the two probes
in the waveguide are all arbitrary.

II. THE DyADIC GREEN’S FUNCTION

The problem to be considered is shown in Fig. 1. Two
probe antennas, arbitrarily oriented, are located in a circu-
lar waveguide. Suppose the radius of the waveguide is a
and is filled with air (g, €¢,). The DGF G of the first kind
pertaining to the waveguide under study satisfies

VXV XG(r,r)-k*G(r,r)=18(r—r) (1)

where k = wue, is the free-space wavenumber. The ex-
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Fig 1. Two probes in a circular waveguide.

pression for G(r, r’) is given by [3], [4]

ZZ

[ (k)M (FK,)

‘LL np
+IM,,(+k, ) (k)]
—’Zzél: }\ kAI\[ n}\(ik?\)Nn)\(+ k)\)
_TM}\(+k}\)M1/}\(+kA)]7 22:, (2)

where k, = (k> =)', ky=(k>=N)""? I,=4a*1-
(n/qnm)Z]an(Qnm)’ I)\ 702.] +1(pnm) n= qnm/a and A
= p.m/a. The quantities p,, and g¢,,, are the mth roots of
the nth-order Bessel function J, and its derivative, J/,
respectively. The Kronecker delta §,=1 for n=0 and
8,=0 for n# 0. In summing, » is from 0 to co and m
from 1 to co. For simplicity, the parallel subscripts e
(even) and o (odd) on M and N in (2) are omitted, that s,
Mg, was simplified to M,,, and so on. M and N are
written as follows:

M, (£k,) =V X[ 2], (1) cos (ng— g, ) e =]

(3)

1
Na(£ky) = 7V XV X [2Jn(}\p)cos(n¢— q5p)eiﬂw]
(4)
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where the angle ¢, =0 for the e component and ¢, = 7/2

for the o component. The general G is a sum of even G,

and odd G, components.
The explicit expression for G(r, r') is given by

1
G(r,r)=- —k—zb‘(r— r)55+

4;1«2 %%“‘ %)
{38/ [n*, M, M (e, + Tes,)

+ N, NN/ (10 + ey )]

+ ﬁ(f)’[n,u.klMpM(;(elF + FeZ#)

— nAk,N,Nj (e + Teyy )]

+ BE[NeaN,N/ (1 €1y — Teyy)]

+ qgﬁ’[np‘klMchp,(eln +Tey,)

— nAk,N, N (e, + Teyy)]|

+ ‘i;(i’;,[uzklM(bM#:(elu + FeZu)
+n%k,N N, (e, + Teyy)|
+$2[nkyN,N/ (T ey + Teyy)]

+ 25/ [Ny NN (F ey — Teyy)]

+ 2§/ [0k, N,NJ (4 ey + Teny)]

+22[k 4NN/ (e —Tep)] )}, z22

where

M, ——1~J (po)sin(ng—¢,) M,=J/(pp)cos(ne— ,)

. ,
N, = J/(Ap)cos(ne— ¢p) N,= ;Jn(kp)sin(nd) - ¢p)

N,=J,(Ap)cos(ne— qSP)

k K P SR A X
YLk, 2T NI, A 4 Lk,
e,=e + gk, (z-2") e, = ejk,(z+z’), i= I, AL

The independent variables of M/, M}, N/, N;, and N/
are p’ and ¢'. Note that all the second unit vectors (except
£) of the dyadic in (5) are primed (p’ ,"). The variable ¢’
should be used in coordinate transformation.

III. Fielp E; RADIATED BY PROBE 1

The coordinate system of probe 1 is O,(§,7%,§), as
shown in Fig. 1. £, and {, are the endpoints and {, is the
feeding point. In the O system, the coordinates of point O;
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are ry( X0, Y10- Z10)- Assume that the current distribution
of probe 1 is given by

Jl(f) =§715(§)3(n)

sink({—¢,)
J E IR
l 1°sink(§3—§2)’ 2EE

where I, is the value of the current at the feeding point.
The electric field radiated from probe 1 is

. ;. S
E=wmfGA@=wm£TJM§ (7)
v 1

where d{ = £dx'+ jdy’'+ Zdz’. Assume that the direction
cosines of { are 5, = cos aj, §, = cos 81, 8;=cosy;. Hence,
the parametric equations of the { axis are

x'=xp =5+ X1 Y'=ye=58+ o
2=z =5, + 2. (8)

Through a tedious treatment (7). the principal value of the
integral for z > z’ is found to be

Ep AlMY’F;L(Z)+A2NXF>\(Z)
=22 ()| AME(2)+ AN, F(z) | (9a)
E/ o 0+ A,N,F,(z)

whereas for z < z’ the principal value is
E, ‘ BlMinh(+ I'z)+ B,N _F,(+Tz)
:ZZ:(¢) BlM}*‘F;L(+rZ)+BZN1’F)\(+rZ)
E/] " 0+ B,N.F\(—Tz)
(9b)

In (9), a correction term E,’ should be added to the term
E’ to yield a correct longitudinal component E.; that is,
E = E/+ E/. The correction term is

R oo 1 N oas
ZEz//(pa(})sz) zjw,u()‘/;S— PB("“I‘)ZZ'[ldg

1
=Jjw “o/ ——S(r—-r)l dz’.
Based on the distribution theory [5], [6]. we have
Solp=p)0(p-#) = LE S
A

-cos (no — ¢,)J,(Ap’)cos(n¢’~¢,).

Hence the correction term is given by

]77
Ez”(p,qb,z)=— . ZZ

J.(Ap)

@MUMMQ

-Jn(}\p)cosn(q)— ¢§)‘§=(2*210)/53 (90)
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where p, = (x} + y})'/? and tang; = y,/x,. In (9),
Mx=nMpcos¢~,uM¢sin¢ My=nMpsin¢+uMd,cos¢>

N, =AN,cos ¢ + nN, sin¢ N, = AN, sin¢ — nN,cos ¢

F(+Tz)=e ki +Te®  F(z)=e*,  i=p,\.
The elements of matrix (¢) are
$11 =Py =cCOSP Py = — Py =sing

¢y =1 other ¢, = 0.

Other parameters of (9) are as follows:

7)0(2_ 60)
A=~ __4__——(‘91](1PMx + S2k1PM)')
ar
N5(2— 6
A2 —_ —O(-—4—0)—(S1k2PNx + SszPNy + S3k3PN:)
T
770(2_ 80)
Ay = = = (= sk Py, = ok Py, + 53k Py
(10a)
770(2_ 60)
B, =— i (slleMx + Szk1QMy)
7]0(2_ 60)
By=— T (SlszNx + SzszNy - S3k3QNz)
7)0(2_ 80)
By=— T<S1k3Qm +52ksQn, + s3k4Qn:)

(10b)

where 1, = /114/€, 1s the intrinsic impedance of free space,
and

ek

Py, = m Ilm ($)f.(+T¢)ds, i=x,y (11a)
1

O =7 [FEm (LG k. i=xy (11b)
1 .,

Py = [Phn (ORGFTE) ds,  i=x,y (110)
kJ,
1

Pu= 7 [ (O 1~ T0) & (114)
1

O =7 [In (LG & i=xyz (1)

1
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where
(§)— ST, (ppe)sin (ng; — ¢,)
Yt
T‘]n/(.upg) cos(ng,—¢,)  (12a)
¢
m, () = J(HP{)SIH(”‘Pg $,)
+?Jn’(ﬂpg)005(”¢§“¢p) (12b)
$
n(§)— (?xpg)cos(mp; ¢)
B¢
+ np—);fn(}\pf) sin(nq){ - qbp) (12¢)
n (§)~—J (Apg)cos(no,—¢,)
O¢
—"P—?Jn(xpf)sm(mf—qsp) (12d)
n.($) = J,(Apg) cos(no, —,) (12e)
f(£T8) =e ko £ Tekx, y=p, X (13a)
7.(¢) = e/, i=u,\A. (13b)

IV. MuTtuAL IMPEDANCE

In order to calculate mutual impedance, we must deter-
mine the tangent component of E; along probe 2. With
reference to Fig. 1, the coordinate system of probe 2 is
O,(u,v,w); w, and w, are endpoints, and w, is the
feeding point. The coordinates of point O, in the O system
are (X,q, Va9, Z29)- The current distribution of probe 2 is
similar to that of probe 1 (eq. (6)), that is,

J(w)=wLo(u)d(v) (14a)
sink(w—w,)
B TSP u—— <W <y
;o 0 sin k (wy —w) MSWS W (14b)
’ sin k(w;—w)
2 . WS ws.
O sin ke (wy — wy) WS WS

Assume that the direction cosines of W are 1, =cosa,,
1, =cos ;. t; = cosvy,. The parametric equations of the w
axis are given by

X, = LW+ Xy

Vo =0WH g 2, = LWz

(15)
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Fig. 2. Two probes meet at 45°.

The tangential component of E; along probe 2 is given by

E,, =E; W= (1,cos¢+1,sin¢)E,

+(—1,sin¢ +1,c08¢)E, + :E.. (16)
Substituting for E, from (9), we get, for z > z’,
= Z Z {ll[Almx(w)fp(w) + AZ”X(W)f)\(W)]
[ Ay (0)m, (9) £ (w) + Ao, () ()]
+t3[A3n:(W)f>\(w)+Ez/,(pw’qbw’zw)]} (1721)

whereas for z < z’,

=2 Z{tl[Blmx(w)fu(+ Tw)+ Byn (w) fr(+ FW)]
+ tz[Blmy(w)fF(-l- Tw)+ Byn, (w) fr(+ Tw)]

+ 15[ Byn (W) ix(— Tw) + E/(py, 6 2,)] ) (17D)

where m (x) (i=x,y), n(w) (i=x,y,z) and f(£Iw),
f.(w) (i=p, A) are similar to (12) and (13) respecuvely,
except that ¢ —w. In addition, p,=(x2+ y2)!/* and
tan¢, = y,/x,. By the reaction concept, the mutual
impedance between two probes is given by
f E, I, dw (18)
10 20 wi

where E,,, is given by (17), and I, is given by (14). The
time factor used is e /*!. If we desire to adopt e’/*!, we
need only replace j by — j in all formulas.

M=_

V. SpecrrFic CASES

As examples, we discuss some useful cases. In the dis-
cussion below, suppose that the feeding points of two
probes are coincident with O; and O,, respectively. The
heights are 7, =§¢;—§, ({;= §‘2—-O) and h,=w;—w, (w
=w, =0), respectively. What is more, assume that the
probes in all the examples (except probes vertical to termi-
nal plane) are parallel to the xy plane and through the
center of the guide (p = 0).

Example 1. Two Probes Meet at 45°
Suppose that the probe 1 is parallel to the x axis and
probe 2 makes an angle of /4 with the x axis, as shown
in Fig. 2. The two are nonplanar skew probes. For probe 1,
the coordinates of the feeding point are (x,4=—a, ;0 =0,
210) the orientational parameters are a; =0, B, =v,=7/2,
=1, 5,=s;=0. For probe 2, the parameters are (x,,=
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y20=—-a/\/5,220); o, =P,=m/4, v,=7/2, t,=1,=
1/ V2, t;=0. From (9), the field E, radiated from probe 1
for z > zy, is found to be

1
E,=22G [ - klnzAH;Jn(lu'p) cos nge’ks

n m

—k,NAJ!(Xp)cos nqbef'“’} (19a)
Ey= 226G [kﬂWAHJn’(NP) sin nepe’*?
1 ,
+ k,nAAz—J,(Ap)sin nq&e/k*z] (19b)
p
E.=Y. Y CoksA AT (Ap)cosnpe’ts (19¢)

n m

where

Cy=Tino(2—-8,) /(47 sin kh,)
AH=‘F;L(+I‘Z]O)R/.L(h1) Ag=F\(+Tz5)Ry(hy)

and

1 /n
Ry(m) =7 [

ol asink (= §) &€
(20a)
1 1y g_ .
Ra() = [ g /NS = al)sin k(= ©)
(20b)

where ({ — a|,={ — a when n is zero or even and ({ — 4|,
= |{ — a| when n is odd. The field distribution for z < zy,
is

1
E,= ZZCO[ k,n*By J(,LLp)coanS(e 4 Telku?

n m

— k,NBJ(Ap)cosne(e ™/ + I’efkh:)] (21a)

) zco[kwuBHJ,:wp) sin ns (¢ + Te's?)

n m

1
+ knABy—J,(Ap) sin ng (e /A + Tefk"")] (21b)
Y

E,=Y. Y — ColsAB,J,(Ap)cos ng (e /532 — Test%)

(21¢)

where By = F,(z,0) R, (h;) and By = F\(z;9)Ry(hy). In
(19) and (21) the terms of A, and By are H mode, and
the terms of A, and By are E mode. If probe 1 makes an
angle of 7/4 with the x axis, like probe 2 in Fig. 2, the
electric fields are similar to (19) and (21), except that

cosng = cosn(d—7/4) and sinng —sinn(¢—m/4).
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Fig. 3. One probe on the terminal wall and one probe on the cylindrical
face.

The mutual impedance between probes in Fig. 2 is

nmw
M=Y Y D,cos - {kyn®R,(hy)R,(,)

n nt

. [ejkullzo'llo) + I“elku(zzo+lxo)]

+ k2>\2R>‘(h1)Rx(hz)[ejk"lzz°721°| + Fe/kA(Zln+zlo)]}
(22)

where Dy = kno(2—8,) /(4w sin khy sin kh,), and R, (h,)
and R,(h,) are similar to (20), except that h; — h,. The
front terms (with subscript p) and the back terms (with
subscript A) in (22) represent the contributions to the
mutual impedance M from the H mode and the E mode,
respectively. Setting n = m =1 in (22), we get the contribu-
tions to M from the H;, and E;;. When two probes meet
at an angle ¢,, the mutual impedance between them is

M=Y Y Dycosne,~ (23)

n m
where the ~ represents all terms in the braces in (22).

Example 2. Two Probes Vertical and Parallel to the
Terminal Wall, Respectively

Assume that the coordinates of the feeding point for
probe 1 are (x4, ¥10.0). The orientational parameters are
o, =B=u/2, vy=0; s5,=5,=0, s;=1. The parameters
for probe 2 are (x,= —a, ¥, =0, z5); a,=0. By =7, =
w/2, t,=1, t,=1t;=0, as shown in Fig. 3. The field
radiated from probe 1, for z > h, is

E,= 22— CoksACpJ (Ap)cosn(d — ¢yp) e/ (24a)

1
E, =33 CoksnCp—J,(Xp)sinn(¢—¢;5) e’ (24b)
P

n m

E, =) Y — CokosCupJ, (Ap)cosn(d — ) e’

n m

(24¢)

where Cp = J,(Ap1o) Ty(hy), pro = (x{y + yip)"/?, tang,, =
Y10/ %10- and

1
T(h) = [0 "8 — Te o8 sin k (hy — §) d¢. (25)

In region 0 <z<h,, the field in (x, y,z) is due to
currents of sections 0z (z > z") and zh; (z < z’); then (9a),
(9b), and (9¢) must be used simultaneously. The integral
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intervals are 0 - z for P, and z - h; for Q,,. Thus
E,=X3 Co[‘ ksACy(2)J) (Ap)cosn( — ¢y9) e/

n o m

+ ksADg(z)J/(Ap)cosn(d — )
. (e’./kxf + I‘ejkxz)]

E¢=ZZC0

n n

1
- k3nDE(z);Jn()\p)Sinn(¢ — ¢19)

(26a)

1
JesnCr(z)=J,(Ap)sinn(¢ — ¢,) e/
o

(e~ 4 Fe/k*“')} (26b)

E/=3, ZCO[_ kiCi(z)J,(Ap)cosn(d—dy)e/>

n o m

—k,Dp(z)J (Ap)cosn(p—¢0)

(e — Te/)] (26¢)
2
Ez”:ZZ_ECOICC%Jn(}\plO)Jn(}\p)
cosn(¢p—)sink(h —z) (26d)
where
1 .=
Cp(2) = J,(Apyo) - [ (77 = Te o sin ke (y — §) df
kYo
(27)
1
D(z) = g, (Npro) - [Me S sink(hy =) s, (28)

Because probe 1 is vertical in relation to the terminal wall,
the H, component is not excited. Therefore there is only E
mode in (24) and (26).

The mutual impedance between the probes in Fig. 3 is

M =3} Dok ATy(hy) Ry(h3)J,(Npyo) cOS nepyge 7,

25> hy. (29)

When the feed point of probe 1 is situated at the center
of the terminal plane (origin), p,, = 0. The Bessel function
J,(0)=0 for n+0 and Jy(0)=1. In this case, only the
modes in which »n = 0 are excited; that is, the fields of the
modes are independent of the azimuthal angle ¢. Thus (24)
reduces to

E, =}, Cok;ACpJy(Ap) e/kr? (30a)
E = § — CokeyCpJy(Xp) e (30b)
whereas (26) reduce: to

E, =Y ColksACg(2)Jy(Ap) e’
~ ks ADg(2)J,(Ap)(e ™% 4 Teskr?)] (31a)

E/= ZCO[_ kiCe(z)Jy(Ap)e’™
—kyDg(2)Jy(Ap)(e 743 = Tesla?)] (31b)
E/=Y% — %C0k3JO(}\p)sink(h1—z). (31¢)

m
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Fig. 4. Two probeson the terminal wall.

Hence (29) can be simplified as follows:

M =} Dok;ATy (hy) Ry(hy) e/ v, (32)

In C,, Cp, Cg(z), Dp(z), and Dy in (30)-(32), 2— 8, =1

and J,(Apyo) =1. Ty (h,) is again given by (25) and R,(4,)
reduces to
hy W
i

where Jj(Alw — a]) = = Jy(A|w — a]) is used.

Ry(h,) = Jl(}\|w—a|)smk(h2 w) dw

(33)

Example 3. Two Probes Perpendicular to Terminal Wall
Assume that the coordinates of feeding points for the

two probes are (x4, ¥15.0) and (X,, ¥20,0), Tespectively,

as shown in Fig. 4. The orientational parameters of the two

probes are ey =a, =B, =B, =7m/2, v=7,=0, 5, =1, =5,
=t,=0, s,=t,=L When hy —hz—h the mutual
impedance is '
1
M= Z Z FDO[]C3(}'Z — _Q,—k_ sin2kh) + k4H(h)]
'J;;(Aplo)Jn(}\on)COS”(‘7’20 — ) (34)

where

H(h) =[§

g fh [e/kalw =t Te k(s +0)]
=0"w=0".
sink(h—§)sink(h—w)d{dw. (35)

The integrating procedures for H(h) are-as follows:

fgof_(;d{dw fgo(f +f ) d{a’w»
LA

where the ~ represents the integrand in H(h). In (34), the
terms involving k, come from E/’.

" )~d§dw
{=w

VI. CONCLUSIONS

The mutual impedance between two probes in a semi-
infinite circular waveguide is analyzed. It can be seen that
the mutual impedance is dependent not only on the probe
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lengths, orientations, and separation distance, but also on
the guide size, the dielectric matenal and the termmal
reflection coefficient.

The constants k, and k, are real for traveling modes
and imaginary for evanescent modes. Hence, it can be seen
from (18) that when the reflection coefficient T is real, the
contribution to the mutual resistance comes from traveling
modes, while the contribution to the reactance is from the
traveling and evanescent modes. When I' is complex, the
mutual resistance and reactance will be dependerit on all
modes.

The lowest mode in circular waveguide is H);. Suppose
that the Hy, is the only traveling mode and that the higher
order modes are evanescent modes that decay exponen-
tially with the distance. Consider T = — 1. Equations (22)
and (23) include the resistance and reactance because the
contribution from the H;; mode exists. Equations (29)
(32), and (34) include only the reactance because there is
no contribution from the H,,. In overmoded gulde the
mutual impedance from the hlgher order modes will be of
interest.
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